

Small Scale Wind Power

Jeremy Rawlings

Consultant in Building Integrated Renewables

THE NATIONAL ENERGY FOUNDATION

www.nef.org.uk

- What do wind turbines do?
- How do they work?
- Can they avoid Carbon Emissions?
- Financial aspects
- Planning
- Questions

Sizes and Applications

Micro: ≤1kW

• Small: 1- 20kW

Medium: 20 - 500kW

• Large: 500kW - 2MW+

Rutland 910-3 200W

Iskra AT5-1 5kW

Vestas V66 2MW
Blyth Harbour
Northumberland

- Homes / farms
- Designed for reliability and low maintenance
- Cut-in speed: 3 4ms⁻¹
- Cost: £1500 £4000/kW

WES5 2.5kW

Iskra AT5-1 5kW

Proven 15kW

Wind!

Parameter	Wind speed	Effects of wind on land
'Cut-in' speed	4ms ⁻¹ (9mph)	Small twigs in constant motion. Light flags extended.
Rated speed	12ms ⁻¹ (27mph)	Large branches move. Whistling in phone wires. Difficult to use umbrellas.
Shut down	> 25ms ⁻¹ (56mph)	Trees uprooted. Structural damage.

So, we want an exposed site (free from trees, buildings...)

Source: Wind turbine manufacturers, BBC website.

Stand-alone

- Very small machines for battery charging, for farms, caravans & boats.
- Power for lighting, pumps, electric fencing
- Grid connected
 - Directly connected to mains electricity
 - Allows operator to claim ROCs
 - Electricity company will require high standard and may limit amount size of turbine.

- Accurate wind data is key:
 - Ideally measure with a mast.
 - A small increase in wind speed can result in a big increase in power generated.
- For small wind, usually desk based:
 - BERR (formerly DTI) wind speed database gives mean wind speeds for every 1km grid square.

- Clear of obstructions
- As high as possible

Source: BWEA

- Air flow becomes turbulent near 'sharp' edges:
 - Causes excessive fatigue damage.

Source: BWEA

 Site turbine at least 10H away from obstructions

Source: BWEA

 Take example from Warwick Wind Trials

- Small wind may increase substantially:
 - If competition between suppliers reduces prices.
 - Increasing cost of grid supplied electricity.
 - Simplified planning procedures.
- Small wind can make a useful contribution to reducing CO₂ emissions.
- Small wind sector largely limited by a marginal economic case.

- Wind turbines...
 - Convert energy in the wind into electricity.
 - Output is strongly related to mean wind speed.
 - A small increase in wind speed can give a lot more power.

- Growing number of products becoming available
 - Increasing choice.
 - Should lead to lower costs.
- Electricity companies required to offer realistic grid connection terms.
- UK has best opportunity in Europe for small wind.
- Wind is no 'magic bullet' but may form part of the solution.

Thank you for listening

Quietrevolution QR5 (5kW)

Any questions?